สืบเนื่องจาก หลักเกณฑ์และวิธีการรายงานการทำเหมือง พ.ศ. 2562 โดยกรมอุตสาหกรรมพื้นฐาน ซึ่งกำหนดให้เหมืองแร่ที่มีขนาดไม่เกิน 100 ไร่ ต้องจัดทำรายงานข้อมูลการรังวัดภูมิประเทศพื้นที่ประทานบัตรด้วย UAV ปีละ1 ครั้ง และเหมืองแร่เนื้อที่ไม่เกิน 625 ไร่ จัดส่งรายงานปีละ 2 ครั้ง ทำให้โดรนกลายเป็นเทคโนโลยีที่น่าจับตามองและเริ่มถูกนำมาใช้เป็นที่แพร่หลายมากขึ้นในอุตสาหกรรม เหมืองแร่ ของประเทศไทย แต่รู้หรือไม่ว่านอกเหนือจากการทำรายงาน เทคโนโลยีโดรนยังสามารถเพิ่มศักยาภาพการทำงานในด้านต่างๆของเหมืองแร่ ตั้งแต่ต้นน้ำถึงปลายน้ำ หรืออีกนัยคือตั้งแต่วางระบบการขุดเจาะ จนถึงการคำนวนหาปริมาณแร่ที่ขุดได้
ในบทความนี้ Aonic Thailand ผู้ให้บริการโดรนอุตสาหกรรมครบวงจร ขอพาทุกท่านสำรวจการประยุกร์ใช้โดรนในด้านต่างๆเพื่อเพิ่มศักยภาพการทำงานของ เหมืองแร่ และการคำนวนหาปริมาตรของวัสดุ (Stockpile) ซึ่งส่งผลถึงการจัดการ Supply Chain ของเหมืองแร่
การประยุกต์ใช้โดรนใน เหมืองแร่
หลักๆแล้วเราสามารถนำโดรนมาประยุกต์ใช่ใน ไซท์งานได้ในทุกระยะของการปฏิบัติงาน โดยจะแบ่งอออกเป็น 1. ระยะการวางระบบและจัดการความเสี่ยงในการปฏิบัติงาน 2. ระยะการดำเนินการงานขุดเจาะและก่อนสร้าง 3. ระยะการจัดการ Supply Chain ซึ่งการใช้โดรนได้เข้ามาช่วยให้การทำงานในแต่ละระยะนั้น สมูธมากขึ้นจากข้อมูลที่แม่นยำและการพลิกแพลงข้อมูลมาใช้ได้อย่างหลากหลายโดยใช้ผู้ดำเนินงานเพียงไม่กี่คน
ระยะที่ 1 การวางระบบและจัดการความเสี่ยงในการปฏิบัติงาน
- การสำรวจพื้นที่ทางอากาศเพื่อตรวจสอบภูมิประเทศโดยรอบและสร้างแผนที่สามมิติในการช่วยวางแผนการจัดการพื้นที่
- การวางแผนการขุดเจาะและระเบิดพื้นที่อ้างอิงโดยช้อมูลเชิงภูมิประเทศ จาก แผนที่ Orthomap และ แผนที่ Digital Terrain Model (DTM)
- การตรวจสอบโครงสร้างพื้นฐานและวัตถุที่อาจเป็นอุปสรรคต่อการจัดการพื้นที่โดยรอบ
- การตรวจสอบเชิงวิศวกรรมธรณีเทคนิค
- การออกแบบแนวทางอพยพและรับมืออุบัติเหตุ
Case Study
การใช้ Sensor LiDAR DJI Zenmuse L1 คู่กับ DJI Matrice 350 RTK เพื่อตรวจสอบพื้นที่ก่อนการขุดเจาะ โดยตัว Sensor จะส่งคลื่นพลังทะลุต้นไม้และพื้นป่าและนำข้อมูลมาสร้างเป็นแผนที่ Digital Terrian Model เพื่อให้ทีมสำรวจประเมิณคุณลักษณะของพื้นผิวดินโดยที่ไม่มีความสูงของสิ่งปลูกสร้างหรือต้นไม้รวมอยู่ด้วย นอกเหนือจากนั้นแผนที่สามมิติโดยรอบของพื้นที่ซึ่งถูกประมวลผลมาอย่างละเอียดด้วย Point cloud จำนวนมากสามารถนำมาวิเคราะห์เพื่อ อกกแบบวิธีการขนย้ายดินและหรือถอนสิ่งกีดขวางให้มีความปลอดภัยมากยิ่งขึ้น และทำให้ผู้ประกอบการคำนวณค่าใช้จ่ายได้อย่างมีประสิทธิภาพมากขึ้น (LiDAR ในโดรนสำรวจและวิธีประมวลผล Point Cloud)
ระยะที่ 2 การดำเนินการงานขุดเจาะและก่อนสร้าง
- การทำแผนที่ฐาน (Base Mapping) เพื่อออกแบบ ไซต์ก่อสร้าง
- การสำรวจและตรวจสอบ ไซต์งานระหว่างการดำเนินการก่อสร้าง
- การเปรียบเทียบหลังการสร้างไซต์งาน
- การทำแผนที่อุโมงค์ในเหมือง
- Real-time monitoring: ตรวจเช็คความปลอดภัยแบบเรียลไทม์
- ติดตามการทำงานของผู้ปฏิบัติงานในเหมือง
- บันทึกและเช็คอุปกรณ์ในไซต์ก่อสร้างรายวัน
Case study
การกำกับดูแลทีมปฏิบัติงานแบบเรียลไทม์ ด้วย กล้อง Zenmuse H20T คู่กับ DJI Matrice 350 RTK ซึ่งสามารถตรวจสอบความเป็นไปของไซต์งานได้จากระยะไกลถึง 1.5 กิโลเมตร รวมทั้ง ฟีเจอร์ Smart-Tracking ที่ช่วยให้เราติดตามวัตถุที่เคลื่อนที่ในภาพพร้อมระบุพิกัดได้อย่างลื่นไหลด้วยการซูมแบบอัตโนมัติ ไม่ว่าจะเป็นรถขนวัสดุหรือผู้ปฏิบัติงานใน Blind Spotที่การตรวจเช็คด้วยกล้องทั่วๆไปไม่สามารถทำได้
นอกเหนือจากนี้ยังสามารถเพิ่มแท็ก เพื่อเป็นการจดบันทึก และเซฟค่าพิกัด/ หมายเลขซีเรียล /วัน/เวลา/ ระดับความสูงของวัตถุลงในภาพที่ถูกบันทึกได้โดยตรง เพื่อทำให้งานเอกสารและการเก็บข้อมูลเป็นเรื่องที่ง่ายมากขึ้น พร้อมที่จะใช้ในการอ้างอิงทางกฏหมาย ซึ่งเหมาะมากกับการบินเก็บข้อมูลในพื้นที่ซ้ำๆในระยะยาวเพื่อการเก็บค่าสถิติ
ระยะที่ 3 การจัดการ Supply Chain
- คำนวณและจัดการ Stockpile
- การจัดการคลังสินค้า
- การวางแผนและตรวจเช็คโลจิสติก
- การคาดการ์ณผลประกอบการ
โดรนกับการคำนวณหา ปริมาตรกองวัสดุ (Stockpile)
การจัดการ Stockpile อย่างมีประสิทธิภาพคือหนึ่งในกุญแจสำคัญของการบริหารธุรกิจเหมืองแร่ เพราะความแม่นยำในการบอกปริมาตรแร่ที่หามาได้ ทำให้ผู้ประกอบการสามารถคาดการณ์ราคาและตีมูลค่าของแร่ที่หามาได้อย่างตรงจุด อีกทั้งยังเป็นการช่วยวางแผนการขนส่ง เนื่องด้วยในเหมืองแร่บางแห่ง อาจมีกองวัสดุต่างชนิดกันเป็นจำนวนมากซึ่งทำให้การบริหารคลังสินค้าเป็นเรื่องที่ท้าทายมากขึ้น ด้วยเหตุนี้ในปัจจุบัน การใช้โดรนเพื่อวัดปริมาตร Stockplie กลายเป็นอีกหนึ่งวิธีที่มีความแม่นยำสูงและใช้ผู้ปฏิบัติการเพียงไม่กี่คน
เราจะวัดกองปริมาตรวัสดุด้วยโดรนได้อย่างไร?
ในภาพรวมแล้ว เราสามารถวัดปริมาตร Stockplie ได้ผ่าน 2 วิธีที่หนึ่งคือการสร้างแบบจำลองสามมิติ ผ่านการ ทำ Photogrammetry ซึ่งคือการนำภาพถ่ายจากโดรนที่มีการทับซ้อนกันบางส่วนมาประติดประต่อกันแล้วปรับแก้ค่าความถูกต้องผ่าน ซอฟต์แวร์และสร้างแบบจำลองออกมาผ่าน ข้อมูล Point Cloud ซึ่งจำนวนภาพที่ต้องการขึ้นอยู่กับขนาดของ Stockpile หลังจากได้ข้อมูล Point Cloud ออกมาแล้วเราจะสามารถนำแบบจำลองที่ปรับแก้ความผิดเพี้ยนของขนาดแล้วมาคำนวนเข้ากับสูตรทางคณิตศาสตร์เพื่อหาปริมาตร
วิธีที่สองในการเก็บข้อมูล Point Cloud คือผ่าน Sensor LiDAR ซึ่งจะได้จำนวน Point Cloud ที่มีความหนาแน่นและมากกว่า เหมาะกับงานที่มีพื้นที่ๆซับซ้อนและต้องการความระเอียดขั้นสูงในการนำมาทำแผนที่ทั้งจะประมวลผลได้ดีกว่าในพื้นที่ป่าชุกและมีสิ่งกีดขวางที่เป็นอุปสรรคต่อการต่อภาพ แลกกับราคาในการดำเนินการที่สูงกว่าวิธีที่1
Case study
การคำนวน Stockpile หลังจากการบินเก็บภาพ โดยใช้โปรแกรม DJI Terra
โดยคล่าวแล้วเราสามารถทำการตั้งให้โดรนบินเก็บภาพอัตโนมัติได้ด้วยการทำ Mapping Mission ผ่าน DJI Pilot 2 App บนโดรน Controller ซึ่งสามารถทำได้ง่ายๆเพียงลากจุดเพื่อคลุมพื้นที่ กองวัสดุที่ต้องการทราบขนาด ด้วยฟีเจอร์ Real-Time Terrian Follow ในโดรน DJI ทำให้คงการบินได้ในความสูงระดับเดียวกันอย่างสม่ำเสมอตลอด ไฟล์ท ซึ่ง Altitude ที่แนะนำจะอยู่ที่ประมาณ 70-75 เมตรเหนือระดับความสูงพื้นดิน เพราะจะเป็นความสูงที่รองรับสเถียรภาพของการ แทค GCPs และ Checkpoints นักบินสามารถปรับลดความสูงของการบินได้หากพื้นที่เหมืองมีขนาดไม่ใหญ่มาก ทั้งนี้ในงานเหมือง Sidelap และ Overlap ที่ 70%และ 80% จะทำให้การประมวลผลหลังจากบินเป็นเรื่องที่ง่ายขึ้น (หลักการ Photogrammetry ด้วยโดรนสำรวจ)
Data Processing
หากเราได้มาร์คตำแหน่ง GCP และ Checkpoints ตอนเก็บข้อมูลแล้ว สามารถ ใช้ฟีเจอร์ GCP Management tool เพื่อแทคมาร์คในรูปเพื่อให้ง่ายต่อการประมวลผล หลังจากได้แผนที่ 2มิติ/3มิติ มาแล้ว สามารถใช้ฟีเจอร์ Annotation and Measurement tool ซึ่งผู้ดำเนินการสามารถลากพินที่ปรากฏขึ้นแล้วครอบคลุมพื้นที่ ที่ต้องการวัดขนาดได้เลย
หลังจากทำการคำนวณเรียบร้อยแล้ว ผลลัพธที่ได้จะออกมาในรูปแบบ Cut and Fill Volume ซึ่ง Cut Volume คือปริมาตรที่อยู่เหนือความสูงของ Base Height และ Fill Volume คือปริมาตรที่อยู่ต่ำกว่า Base Hight ซึ่งเราสามารถแก้ไข Base Plane ได้ สองแบบ
Mean Plane: วิธีนี้จะคำนวณหาฐานของ Stockpile โดยการหาค่าเฉลี่ยจากความสูงของจุดรอบฐานของกองวัสดุที่เรากำหนดไว้ในSoftware เหมาะแก่การหาขนาดกอง Stockpile ขนาดใหญ่ และตั้งอยู่บนพื้นที่ไม่มีรั้วรอบขอบชิด
Lowest Plane: วิธีนี้เหมาะกับ กองวัสดุที่ถูกเก็บในบังเกอร์หรือถูกกองอยู่ติดชิดผนัง ซึ่งมีฐานและขอบชัดเจนและเป็นพื้นที่ที่มีความสูงสม่ำเสมอ เราสามารถวัดจากจุดที่ต่ำที่สุดของกองวัสดุได้โดยตรงโดยไม่ต้องหาค่าเฉลี่ย
หลังจากนั้นเราสามารถ Export ข้อมูลออกมาเก็บไว้เพื่อทำการเปรียบเทียบ.ในระยะยาว
โดรนและซอฟแวร์ที่ใช้ในการ รังวัดเหมืองและคำนวน Stockpile
การเลือกเครื่องมือในการเก็บข้อมูล เหมืองแร่ นั้นจะมีปัจจัยหลักๆอยู่แค่สองอย่างนั้นคือ
1.ความคมชัดของรูปภาพ
กล้องที่มีเซนต์เซอร์ขนาดใหญ่ Mechanical ชัตเตอร์ ออพติเคอลเซนเซอร์คุณภาพสูง และจำนวนเมกะพิกเซล
2.ความแม่นยำของข้อมูล
เพื่อความแม่นยำสูงสุด การทำงานร่วมกันของ โดรนและ เครื่องรับสัญญาณ GNSS จึงเป็นสิ่งที่เลี่ยงไม่ได้ ที่จะทำให้การส่งค่าปรับแก้พิกัดระหว่างการบินเก็บข้อมูลเป็นไปได้อย่างมีประสิทธิภาพสูงสุดด้วยความคาดเคลื่อนเพียงแค่ไม่กี่เซนติเมตร จากการทำ RTK ( RTK นวัตกรรมแม่นยำสูงสุดเพื่อโดรนสำรวจ) เพราะถึงแม้เหมืองแร่ หรือ Stockpile จะไม่มีการเปลี่ยนแปลงขนาดอย่างมีนัยยะสำคัญในเวลาอันสั้น แต่เพื่อความแม่นยำหากมีการเพิ่มเติมขนาดของ Stockplie วันต่อวัน การทำ RTK และ GCPs จะช่วยทำให้การคลาดเคลื่อนหลักเมตรเหลือเพียงไม่กี่เซนติเมตรเท่านั้น
อย่างไรก็ตามสิ่งที่จำเป็นมากที่สุดคือการการวิเคราะห์จากสภาพแวดล้อมและสถานที่จริง อาทิ หากสภาพนั้นล้อมรอบไปด้วย ป่า หรือ สิ่งกีดขวางทางธรรมชาติการใช้ LiDAR นั้นจะตอบโจทย์ได้ดีมากกว่าในด้านความแม่นยำมากกว่าการทำ Photogrammetry ปกติ
โดรนที่แนะนำ
ในปัจจุบันจะมีโดรนที่แนะอยู่ทั้งหมดสองรุ่นนั้นคือ Mavic 3 Enterprise ที่มีขนาดเล็กกะทัดรัด กับ โดรนขนาดใหญ่ DJI Matrice 350 RTK ซึ่งรองรับการติดตั้งเพย์โหลด (กล้องสำหรับโดรน) ซึ่งตัวกล้องก็ถูกออกแบบมาให้มีความคมชัดของภาพที่มากกว่า และอีกทั้งยังสามารถติดตั้ง Sensor LiDAR ได้ในขณะที่ Mavic 3 Enterprise จะไม่สามารถติดตั้ง Sensor LiDAR ได้
รายงานตรวจสอบมาตรฐานเหมืองแร่
กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่ ได้มีการกำหนดรูปแบบการรายงานผลที่ครบท้วนต้องประกอบไปด้วย
- แผนที่ภาพถ่ายแนวดิ่ง
- แผนที่ภูมิประเทศแสดงเส้นชั้นความสูง หรือ แบบจำลองภูมิประเทศ (DEM)
- รายงานการคำนวฯหาปริมาณแร่ หิน ดิน ทราย กองแร่ จาก แบบจำลองภูมิประเทศ (ถ้ามี)
โดยมีคำแนะนำรายละเอียดการเก็บภาพไว้ดังนี้
- แผนที่ภาพถ่ายแนวดิ่ง มีขนาดจุดภาพ (GSD) ไม่เกิน 10 ซม. แสดงขอบเขตประทานบัตรและพื้นที่ข้างเคียง
- แผนที่เส้นชั้นความสูงจากข้อมูล DEM ที่มีขนาดจุดภาพ (GSD) ไม่เกิน 50 ซม.
- ภาพถ่ายมีส่วนซ้อนของภาพตามแนวบินไม่ต่ำกว่า 85% และระหว่างแนวบินไม่ต่ำกว่า 75%
- ภาพถ่ายมีขนาดจุดภาพ (GSD) ไม่เกิน 7.5 ซม.
- ความคลาดเคลื่อนของวิธีการรังวัดเป้าบังคับ ในแนวราบไม่เกิน 3 ซม. และในแนวดิ่งไม่เกิน 5 ซม.
- วางเป้าบังคับภาพถ่ายไม่ต่ำกว่า 5 จุด ในพื้นที่ทำเหมือง ในกรณีพื้นที่ขนาดใหญ่ ให้วางเป้าบังคับไม่ต่ำกว่า 5 จุดต่อ ตร.กม. โดย กระจายตัวตามหลักการรังวัด และเพิ่มเติมในพื้นที่ที่มีความแตกต่างด้านความสูง
นอกจากนี้จะต้องรายงานข้อมูลต้นฉบับที่ได้จากการรังวัด ได้แก่
- ภาพถ่ายทางอากาศ
- ข้อมูลจุดควบคุมภาพถ่าย
- หมุดหลักฐานที่เป็นจุดตรวจสอบ
- บันทึกหรือรายงานการ
- ประมวลผลภาพถ่าย (Log file) ซอฟท์แวร์ที่ใช้
- ข้อมูลตำแหน่งของจุดในภูมิประเทศแบบ Point cloud: ค่าพิกัด และค่าสีข้อมูล เป็นต้น
ชนิดแร่ คุณลักษณะแร่ และปริมาณแร่ท่ีผลิตได้
(1) ชนิดแร่ คุณลักษณะ และปริมาณแร่ที่จาหน่ายออกไป พร้อมรายละเอียดของผู้ซื้อแร่และการชำระค่าภาคหลวงแร่
(2) ชนิดแร่ และปริมาณแร่ที่คงเหลือในเหมือง
(3) จานวนพื้นท่ีท่ีทำเหมือง
(4) จานวนดินหรือหินปนแร่ท่ีขุดได้
(5) รายละเอียดเครื่องจักรและอุปกรณ์ในการทำเหมือง